3 research outputs found

    Interaktives, webbasiertes 3D-Informationssystem für den Heidelberger Universitätscampus

    Get PDF
    Die Arbeit thematisiert das bauliche Abbild und die Entwicklung des Heidelberger Universitätscampus. Im Mittelpunkt stehen zum einen die Schaffung eines virtuellen, dreidimensionalen Computermodells des Untersuchungsgebiets und zum anderen die Konzeption und Implementierung eines raum-zeitlichen Informationssystems, das den Universitätscampus zum Inhalt hat. Neben den drei Dimensionen des Raums wird als vierte Dimension die Zeit integriert. Dies erlaubt die Abbildung zukünftiger und historischer Planungen. Das 3D-Modell basiert auf aktuellen digitalen und historischen analogen Quellen sowie auf umfangreichen eigenen Erhebungen. Die digitale Prozesskette zur Erfassung, Verarbeitung und Verwaltung der Daten ist so konzipiert, dass eine möglichst breite Verwendung der Inhalte gewährleistet ist. Für die Schaffung des 3D-Modells wird ein Konzept verfolgt, welches dessen Einsatz für unterschiedlichste Anwendungszwecke gestattet. Das raum-zeitliche Informationssystem ist so gestaltet, dass dem Nutzer ein ubiquitärer, interaktiver Zugriff auf das 3D-Modell und den damit verknüpften thematischen Daten ermöglicht wird. Das Informationssystem wird über das Internet bereitgestellt und besitzt den immersiven Charakter einer Virtual Reality Umgebung. Der funktionale und inhaltliche Umfang des Systems bezieht formell in den städtebaulichen Planungsprozess involvierte Akteure wie Stadtplaner und Architekten ebenso ein wie die an Planungspartizipation und allgemeinen, raumbezogenen Informationen interessierte breite Öffentlichkeit. Die Implementierung des interaktiven, webbasierten 3D-Informationssystems basiert auf international standardisierten, nicht-proprietären Softwaretechnologien

    Environmental and biological controls on Na∕Ca ratios in scleractinian cold-water corals

    Get PDF
    Here we present a comprehensive attempt to correlate aragonitic Na∕Ca ratios from Desmophyllum pertusum (formerly known as Lophelia pertusa), Madrepora oculata and a caryophylliid cold-water coral (CWC) species with different seawater parameters such as temperature, salinity and pH. Living CWC specimens were collected from 16 different locations and analyzed for their Na∕Ca ratios using solution- based inductively coupled plasma-optical emission spectrometry (ICP-OES) measurements.The results reveal no apparent correlation with salinity (30.1–40.57 g  kg−1) but a significant inverse correlation with temperature (−0.31±0.04  mmolmol−1∘C−1). Other marine aragonitic organisms such as Mytilus edulis (inner aragonitic shell portion) and Porites sp. exhibit similar results highlighting the consistency of the calculated CWC regressions. Corresponding Na∕Mg ratios show a similar temperature sensitivity to Na∕Ca ratios, but the combination of two ratios appears to reduce the impact of vital effects and domain-dependent geochemical variation. The high degree of scatter and elemental heterogeneities between the different skeletal features in both Na∕Ca and Na∕Mg, however, limit the use of these ratios as a proxy and/or make a high number of samples necessary. Additionally, we explore two models to explain the observed temperature sensitivity of Na∕Ca ratios for an open and semi-enclosed calcifying space based on temperature-sensitive Na- and Ca-pumping enzymes and transport proteins that change the composition of the calcifying fluid and consequently the skeletal Na∕Ca ratio

    Host-influenced geochemical signature in the parasitic foraminifera Hyrrokkin sarcophaga

    Get PDF
    Hyrrokkin sarcophaga is a parasitic foraminifer that is commonly found in cold-water coral reefs where it infests the file clam Acesta excavata and the scleractinian coral Lophelia pertusa. Here, we present measurements of the elemental and isotopic composition of this parasitic foraminifer for the first time, analyzed by inductively coupled optical emission spectrometry (ICP-OES), electron probe micro analysis (EPMA) and mass spectrometry (MS). Our results reveal that the geochemical signature of H. sarcophaga depends on the host organism it infests. Sr/Ca ratios are 1.1 mmol mol-1 higher in H. sarcophaga that infest L. pertusa, which could be an indication that dissolved host carbonate material is utilised in shell calcification, given that the aragonite of L. pertusa has a naturally higher Sr concentration compared to the calcite of A. excavata.Similarly, we measure 3.1 ‰ lower δ13C and 0.25 ‰ lower δ18O values in H. sarcophaga that lived on20 L. pertusa, which might be caused by the direct uptake of the host’s carbonate material with a more negative isotopic composition or different pH regimes in these foraminifera (pH can exert a control on the extent of CO2 hydration/hydroxylation) due to the uptake of body fluids of the host. We also observe higher Mn/Ca ratios in foraminifers that lived on A. excavata but did not penetrate the host shell compared to specimen that penetrated the shell, which could be interpreted as a change in food source, changes in the calcification rate, Rayleigh fractionation or changing oxygen conditions. While our measurements provide an interesting insight into the calcification process of this unusual foraminifer, these data also indicate that the geochemistry of this parasitic foraminifer is unlikely to be a reliable indicator of paleoenvironmental conditions using Sr/Ca, Mn/Ca, δ18O or δ13C unless the host organism is known and its geochemical composition can be accounted for
    corecore